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Abstract

Numerous recent advances in robotics have been inspired by the biological principle of tensile integrity—or
‘‘tensegrity’’—to achieve remarkable feats of dexterity and resilience. Tensegrity robots contain compliant
networks of rigid struts and soft cables, allowing them to change their shape by adjusting their internal tension.
Local rigidity along the struts provides support to carry electronics and scientific payloads, while global
compliance enabled by the flexible interconnections of struts and cables allows a tensegrity to distribute impacts
and prevent damage. Numerous techniques have been proposed for designing and simulating tensegrity robots,
giving rise to a wide range of locomotion modes, including rolling, vibrating, hopping, and crawling. In this
study, we review progress in the burgeoning field of tensegrity robotics, highlighting several emerging chal-
lenges, including automated design, state sensing, and kinodynamic motion planning.
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Introduction

Tensegrities are composed of rigid compressive ele-
ments (struts) and flexible tensile elements (cables),

connected to create a compliant yet stable network (Fig. 1).1

The inclusion of rigid components and the overall low stiff-
ness (or high ‘‘softness’’2) of the structure endows tenseg-
rities with desirable properties found in both classically
‘‘rigid’’ and ‘‘soft’’ robots. Tensegrities have served to in-
spire art, model biological structures like the human skeleton,
and to provide designs for lightweight and strong architec-
ture.3–5 In fact, tensegrities can form the minimal-mass
structure required to sustain a given compressive6 or bend-
ing7 load, exhibiting great potential for use as lightweight
deployable satellites and other structures.8 Tensegrities have
even been explored for use as robotic grippers,9 manipula-
tors,10 and shoulder joints for manipulator arms.11 While the
scope of the tensegrity literature is vast, in this review, we
focus on locomoting tensegrity robots. We refer to other re-
views, when applicable, for further details on nonlocomoting
tensegrities.1,3–5,12–14

Numerous tensegrity robots have been proposed that uti-
lize a wide range of mechanical designs, locomotion modes,
and sensing modalities. For example, some tensegrity robots
can adjust the length of either their struts15 or cables,16,17 to
change their resting shape and induce motion by shifting their
center of mass. Others harness thrust generated by jet-
packs,18 vibration,19 or propellers.20 Tensegrity robots often
exhibit passive compliance, allowing their structure to absorb
energy, while providing robustness to damage and pressure.21

Passive deformation may also be exploited to absorb impacts
from unintended falls or extraterrestrial landing (Fig. 1C).16

In this review, we survey recent progress and highlight
grand challenges for the field of tensegrity robotic locomo-
tion. Although we separate key concepts for organizational
clarity, we would like to simultaneously convey the inter-
disciplinary nature of this field, by discussing interactions
between the relevant fields of study. We begin by discussing
the mechanical design of tensegrity robots and then overview
existing locomotion methods, sensing techniques, and ap-
proaches for control and motion planning. While there have
been great advancements in each area thus far, fundamental
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challenges remain, ranging from automated codesign of
sensors, actuators, and the underlying mechanical structures;
improved sensors and algorithms for state estimation; and
real-time path planning algorithms. As research progresses,
we expect tensegrity robots to achieve unprecedented mo-
bility in extreme environments.

Structural Design

There are myriad ways to connect compressive and tensile
elements to create tensegrity structures.1 Various materials
could be used for the compressive and tensile elements,
depending on the desired balance between competing de-
sign objectives (cost, strength, weight, etc.). Fortunately,
there are numerous tools to aid in the structural design of

tensegrities, including analytic frameworks22 and robot
simulators.23,24 In this study, we summarize the design of
tensegrity structures, that is, the selection and placement of
struts and cables.

In the taxonomy delineated by Skelton, tensegrities can be
classified by the number of rigid bodies in contact.6 For ex-
ample, class 1 tensegrities such as the six-bar icosahedron
that forms the structural basis of numerous tensegrity ro-
bots16,21,23,25,26 (Fig. 2A) have only one rigid body contact-
ing each node; no two struts are fixed in contact (however,
they could incidentally contact during normal motions).
Class 4 ‘‘t-bar’’ tensegrities (resembling the kites built by
Snelson,3 but pinned at the two struts’ intersection) have
four struts connecting at a single node and are proven as
the minimal mass structures for compressive loading

FIG. 1. Tensegrity concepts were
originally applied to create (A) art-
work3 and (B) lightweight architec-
tural structures.4 (C) Recently,
roboticists have built tensegrity ro-
bots that can withstand significant
impacts, such as falling from the
roof of a building.16 Labels 6 and 7
point to nodes 6 and 7, respectively,
to help visualize the spinning tra-
jectory followed by the tensegrity as
it fell from the roof of a building.
Color images are available online.
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conditions,6 suggesting that further developing techniques
for automated design of tensegrity structures could lead to
mechanically optimal robots. Although most tensegrities are
composed of a single base topology, some tensegrities have
nested hierarchies of fundamental strut-cable arrangements6

or a base pattern repeated serially.27 In addition, researchers
have recently proposed changing the stiffness of tensegrities
on-demand by switching between a class 1 and a class 2
topology, highlighting the key role that topology plays in
performance, even with the same set of parts.28

Since each member in a tensegrity primarily only experi-
ences tension or compression, designers often treat the ten-
segrity as a simple truss.1 Mechanically, this simplification
allows for a high degree of controllability, reliability, and
tunability. The truss model also allows for the development
of analytic models of deformation, alleviating the need for a
more complex finite-element simulation. Many methods
have been proposed for form-finding (finding the rest con-
figurations) of tensegrities (as reviewed by Tibert and Pel-
legrino,22 and Juan and Tur,13) and analyzing their dynamic
properties.12 Importantly, the stiffness of the overall ten-
segrity structure can be adjusted by increasing the prestress
(or resting tension) in the tensile elements.

To reduce prototyping cost and time, tensegrity topologies
can be designed in an autonomous or semiautonomous
manner in a robot simulator. For example, Paul et al. used
evolutionary algorithms (EAs) to specify the number and size
of rods in addition to the inter-rod connections (Fig. 2B, E).32

To further generalize the design process, Rieffel et al. de-
signed an EA to generate graphs that represent the connec-
tivity of tensegrities and allowed the simulator to determine
the resting shape (Fig. 2C).30 In these examples of EAs in
tensegrity design, the simulation environments and search
algorithms were formulated to ensure that generated ten-
segrity structures could be manufactured. However, there is
not a generalized framework for determining if or how sim-
ulated solutions will transfer to functional robotic hardware.
Promisingly, Zheng et al. recently proposed a robustness
metric for estimating the likelihood of achieving sim-to-real
transfer for tensegrity designs.33

Tensegrity hardware design is often achieved through a
combination of human intuition and mechanical models
(Fig. 2A, B).21,29 Once a topology has been selected, actuator
and sensor placement is often decided heuristically, which
can lead to inefficient or redundant designs. Fortunately,
several researchers have proposed iterative methods for

FIG. 2. Many methods exist for designing tensegrity robots, using combinations of automated tools and designer intuition.
(A) Hand-designed six-bar icosahedron with graphite composite tubes and passive helical springs.21 (B) Hand-designed
three-bar crawling tensegrity structure.29 (C) evolutionary algorithms can operate on an abstract connectivity graph to
generate novel tensegrity designs of varying size and numbers of struts and cables.30 Additive manufacturing and rubber
bands were used to physically realize the designs. (D) Modular elastic prototyping nets for quickly manufacturing the cables
for a tensegrity.31 Left: assembly process. Starting with a modular lattice (i), rods are sequentially added (ii–v), to create an
equilibrium icosahedron shape. Right: additional manufactured structures, including a spine robot (top) and a cube-like
shape (bottom). (E) Direct encoding of cable and strut lengths, in addition to connectivity, can be paired with evolutionary
algorithms to generate tensegrity designs.32 Color images are available online.

TENSEGRITY ROBOTICS 3

D
ow

nl
oa

de
d 

by
 Y

A
L

E
 U

N
IV

E
R

SI
T

Y
 f

ro
m

 w
w

w
.li

eb
er

tp
ub

.c
om

 a
t 1

1/
07

/2
1.

 F
or

 p
er

so
na

l u
se

 o
nl

y.
 



choosing where to place sensors and actuators within the
networks of cables and struts, in an effort to balance the
competing requirements of low cost and high perfor-
mance.34–36 Many materials for struts and cables have been
used, including metal and fishing line (Fig. 2B),27,29 alumi-
num and paracord,16 graphite composite tubes and passive
helical springs (Fig. 2A),21 and acrylic pipes paired with
rubber bands.37 The stiffness of the tensegrity can even be
changed to some degree through the use of prestress in the
cables and adjusted in an application-specific manner to im-
prove robot performance. For instance, a tensegrity-inspired
fish robot used prestretched cables to stiffen its body and im-
prove its swimming speed.38 Researchers have even begun
exploring the use of variable-stiffness materials and mecha-
nisms39 in tensegrities, allowing robots to change the bending
or tensile stiffness of their members and thereby modify their
dynamics. For example, Zappetti et al. used a low-melting
point alloy to change the stiffness of a stationary three-bar
tensegrity,40 while Friesen et al. controlled the stiffness of their
tensegrity-inspired arm by adjusting its cable tension.11

Connecting the cables and struts in a tensegrity is
straightforward for simple structures such as a three-bar
prism, but quickly becomes complicated. For example, the
canonical six-bar icosahedron tensegrity truss has 24 cables
that need to be attached. During assembly, the cables’ natural
tension makes the structure deform into shapes that are dif-
ficult to work with. To simplify assembly, one group pro-
posed modular lattices that reduce assembly time from hours
to minutes for moderately-complex designs (Fig. 2D).31

Zappetti et al. proposed a three-dimensional (3D) printed
lattice structure that was used to make icosahedron mod-
ules,41 while Lee et al. simultaneously 3D printed polylactic
acid (PLA) struts alongside a dissolvable mold that was later
filled with silicone to make the tensile cables.42 Other re-
searchers have proposed 3D printing tensegrities and then
replacing some printed connections with cables, although this
technique has not been used to create locomoting tensegrity
robots.30 Additional design considerations for selecting ten-
segrity hardware include impact resilience,16 cost,35 and
modularity.19

Simulation

Many studies have used simulation to generate and eval-
uate designs of and control policies for tensegrity robots.
There are three main families of simulation tools used in this
context: (1) the more traditional physics engines, which are
based on first-principles, analytical models, and numerical
approximations; (2) analytical formulations, which solve
systems of differential equations that represent the dynamics
of a tensegrity structure; and (3) the emerging family of
differentiable physics engines, which aim to learn a physical
model directly from data. In this section, we introduce pop-
ular physics engines, discuss several tensegrity robot simu-
lators, and describe the newer differentiable simulators. A
high-level comparison of several popular simulators is shown
in Table 1. More detailed descriptions of each simulator are
presented throughout this section.

Simulators based upon traditional physics engines use first
principles from physics to predict the future motions of ob-
jects. Since tensegrity assemblies are composed of rigid struts
and compliant cables, tensegrity simulators usually include a

collision detector and both rigid body and soft body dynamics
components. Rigid body physics engines, such as the popular
bullet248 and Open Dynamics Engine (ODE),49 can effi-
ciently calculate rigid-body motions in parallel. Soft-body
physics engines implement various solution methods, rang-
ing from the bounding box-based bullet348 to finite element
method (FEM)-based Vega-FEM50 and simulation open
framework architecture (SOFA).51 These engines can accu-
rately model deformable objects, making them an ideal
choice to model soft bodies such as tensegrity cables, skins,
and strut endcaps.

The soft and compliant properties of tensegrities can be
simulated by extending or combining different physics engines
(such as ODE, MuJoCo,52 or bullet2). For instance, the early
tensegrity simulation environment by Paul et al.29 was built
upon ODE and supports cables as virtual objects that are
massless, volumeless, and do not have any contact character-
istics. More recent work by Wang et al.53 built a tensegrity
robot over the MuJoCo physics engine.52 Both Caliper43 and
the open-source NASA Tensegrity Robotics Toolkit (NTRT)24

extend bullet2 with support for compliant cables. NTRT pro-
vides relatively comprehensive support for tensegrity robot
modeling and has consequently become the most popular
choice for the development of gaits in simulation.

Starting from analytical formulations of the statics and
dynamics of a tensegrity structure, several researchers have
achieved higher level tasks such as topology optimization
and controller design.54,55 These analytical models make
simplifications, such as treating the struts as cylinders, pre-
venting rotation along the axis of the struts, ignoring endcaps,
and assuming that there are no collisions between cables. For
instance, TensegrityMATLABObjects (TMO)44 is a Matlab-
based tensegrity simulator, which supports strut-ground
collision and friction-less contact. Software for Tensegrity
Dynamics (STEDY)45 and Modeling of Tensegrity Struc-
tures (MOTES)46 are Matlab-based comprehensive tools that
use nonminimal Cartesian coordinates to describe the dy-
namics of the system. VirtualTensegrities56 is a Java-based
simulator that can visualize multiple tensegrity structures yet
neglects collisions.

As an example of how multiple simulators can be used to
model a single robot design, consider the SUPERball v2 ro-
bot16 (Fig. 3), which is composed of six struts and 24 cables.
During design, and for predicting dynamic motions using
analytic models, TMO44 simulator is often used to reduce
cost, development time, and operational risk. Subsequent
controller development and modeling can be done in higher
level simulators such as MuJoCo53 and NTRT.24 Im-
portantly, TMO can only model dynamic motions and con-
tacts between struts and the ground, while neglecting friction,
strut–strut contact, and cable contacts. MuJoCo can addi-
tionally model strut–strut contact and friction, but only
NTRT can detect collisions between cables and other com-
ponents. This capability has helped facilitate successful
transfer of locomotion policies from NTRT to reality.57

Although complicated motions can be generated in simu-
lation, policy transfer from simulation to reality is plagued by
inconsistencies. Mitigating this so-called ‘‘reality gap’’ be-
tween simulation and hardware typically requires an iterative
process where simulator parameters are tuned after running
experiments on physical robots to more accurately reflect real
conditions. For example, hardware validation of the NTRT

4 SHAH ET AL.

D
ow

nl
oa

de
d 

by
 Y

A
L

E
 U

N
IV

E
R

SI
T

Y
 f

ro
m

 w
w

w
.li

eb
er

tp
ub

.c
om

 a
t 1

1/
07

/2
1.

 F
or

 p
er

so
na

l u
se

 o
nl

y.
 



simulator has been performed for spine-like tensegrity ro-
bots58 and a six strut icosahedron robot.23 These studies
identified system parameters that could be tuned to increase
the accuracy of NTRT and improve its applicability to real
systems. To reduce the data requirement during policy gen-
eration, Zhu et al. used a Bayesian optimization identification
framework with a parameter projection to a lower dimen-
sional space through embedding.59,60 Nevertheless, system
identification techniques assume that the underlying analyt-
ical or numerical model is conceptually correct and the reality
gap can be effectively eliminated by tuning the model’s pa-
rameters. Frequently the model is imperfect, and significant
reality gaps persist, even after tuning model parameters.

To further diminish the reality gap, researchers have begun
building physics engines predicated on a differentiable
model, such as a deep neural network. Differentiable models
help to reduce data requirements, increase the policy update
frequency from per-trajectory to per-time step, and allow the
robot to learn system dynamics directly from data. One
method for defining differentiable physics engines is to
model system components as moving particles that interact.61

Each element in a scene (robot and environment) can be split
into multiple modules, and the simulator can then generate a
graphical representation of module interactions. Two classes
of interactions can be defined: fixed system topology and
temporary connections for collisions. This framework gives

rise to an interaction network that depicts the interactions of
different modules.

Recently, Wang et al. proposed the first differentiable
physics engine focused on tensegrity systems. It uses interac-
tion networks, as well as first principles from physics.47,53

Namely, the differentiable physics engine models cable ten-
sions as spring forces that depend linearly on an unknown
coefficient that needs to be learned from data. The friction and
the reaction forces, however, are more complex and involve
nonlinear components modeled by neural networks. The
combination of first principles and interaction networks results
in a more data-efficient, explainable, and modular pipeline for
system identification. One limitation of the differentiable
physics engine of Wang et al. is that it considers cables as
virtual objects with no mass, volume, or contact. An inherent
limitation of all differentiable engines is that they assume that
system dynamics are totally unknown—even though the
governing equations of motion are often well understood—and
try to learn the dynamics exclusively from data.

Locomotion

A rich variety of locomotion modes have been demon-
strated for tensegrity robots (Fig. 4). Many of the tensegrity
robots we reviewed move by rolling, or what Kim et al. refer
to as ‘‘punctuated rolling,’’ since the motion is characterized

Table 1. Comparison of Various Tensegrity Robot Simulators

Simulator Physics engine

Cable Ground Rod

DifferentialMass Contact Reaction Friction Reaction Friction

Paul et al.29 ODE
Caliper43 Bullet2
NTRT24 Bullet2
TMO44 Matlab
STEDY45 Matlab
MOTES46 Matlab
Wang et al.47 MuJoCo

The main differences of the tensegrity simulators are in (1) the physics engine that the simulator is built on (where MATLAB refers to
custom physics engines programmed using MATLAB); (2) modeling of the cable (mass and contact with other objects); (3) modeling of the
contact between the robot and the ground (reaction force and friction force); (4) modeling of the rod-rod contact (reaction force and friction
force); (5) differentiability.

MOTES, Modeling of Tensegrity Structures; NTRT, NASA Tensegrity Robotics Toolkit; ODE, Open Dynamics Engine; STEDY,
Software for Tensegrity Dynamics; TMO, TensegrityMATLABObjects.

FIG. 3. SUPERball v216 (A) hardware, and its model in (B) the Tensegrity MATLAB Objects (TMO) tensegrity si-
mulation framework,44 (C) the MuJoCo physics engine,53 and (D) the NASA Tensegrity Robotics Toolkit (NTRT). TMO
can simulate dynamic motions, while MuJoCo can additionally detect rod-rod collisions, and NTRT can even detect
collisions between cables and other components. Color images are available online.

TENSEGRITY ROBOTICS 5

D
ow

nl
oa

de
d 

by
 Y

A
L

E
 U

N
IV

E
R

SI
T

Y
 f

ro
m

 w
w

w
.li

eb
er

tp
ub

.c
om

 a
t 1

1/
07

/2
1.

 F
or

 p
er

so
na

l u
se

 o
nl

y.
 



FIG. 4. Representative examples of locomotion strategies utilized by tensegrity robots. Since actuation and topology are
often tightly coupled with the locomotion strategy, these are also indicated for each example. Color images are available
online.
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by discrete, sequential impact events between the strut ends
and the ground.62 Other tensegrity robots locomote by
swimming, hopping, climbing, flying, vibrating, or crawling.
Often, actuator choice and robot topology are tightly coupled
with the desired mode of locomotion. For example, climbing
robots are best suited to tower structures, whereas rolling is
best suited to symmetric topologies approximating a sphere,
such as the widespread six-bar icosahedron.

Rolling

Rolling tensegrities achieve motion by displacing their
center of gravity so that it is outside their polygon of stability
(the vertical projection of the nodes that are in contact with
the ground). The result is a tipping from face to face. Since
the mass of a tensegrity is often concentrated in the rigid
struts that form the structure, rolling tensegrities must be
capable of large structural deformations.

Deformations are typically produced by changing the length
of tensile elements along the edges of a tensegrity, which in
turn shifts the struts and causes the structure to topple. To
achieve a rolling locomotion mode, many tensegrity robots
feature motors mounted on their rigid struts to contract the
cables that serve as the edges of the tensegrity.23,25,62–67 Other
actuators have been demonstrated for changing the length of
the edges, including linear servos in series with springs,15,17,68

liquid crystal elastomer threads activated with near-infrared
light,69 shape memory alloy springs,37 silver-coated twisted
nylon,70 and McKibben pneumatic actuators.26,71,72 Most
rolling tensegrity robots are six-strut class 1 structures with an
icosahedron resting shape. A few two- and three-strut rolling
tensegrities have been shown in simulation, but none was
implemented in hardware.55,73 We have observed the rolling
locomotion approach used on robots with characteristic length
scale of meters (e.g., Superball16) down to a few centimeters
(e.g., Wang et al.’s light-powered tensegrity69), with speeds on
the order of a few body lengths per minute (�3.5 BL/min16 and
�1.15 BL/min69).

While most rolling tensegrities modulate the lengths of their
tensile elements to roll, several other strategies have been
demonstrated. For example, the TT-4mini has custom linear
actuators as its struts and passive elastic elements as its edges.17

Baines et al. designed reconfigurable planar membrane actua-
tors that form the faces of tensegrity robots, capable of ex-
tending in-plane to change the tensegrity’s shape, or bulging
out of plane to tip the tensegrity.74 In-plane extending mem-
branes were demonstrated on a 6-strut icosahedron, whereas
out-of-plane membranes were demonstrated on a rolling 12-bar
rhombicuboctahedron, 4-strut cube, a 10-strut dodecahedron,
and various others. Curved two-strut tensegrities introduced by
Kaufhold et al.75–77 and Rhodes and Vikas78 roll by shifting
masses along tracks embedded in the curved struts.

Crawling

Several tensegrity robots are capable of deforming their
structure to use a subset of their strut ends as feet, achieving
gaits resembling those of legged animals. All reviewed
crawling tensegrities either relied on winch and cable actua-
tion27,29 or were only realized in simulation.79–82 For example,
Masic et al. simulated a class-II tensegrity tower composed of
four-bar prism segments.79 Paul et al. demonstrated three-
bar27,29 and four-bar29 crawling robots in simulation and

hardware, resulting in robots 36 cm long, with resulting speeds
of �2 BL/min.29 SunSpiral and colleagues introduced the
TetraSpine, a class of multisegment spine-like robots that
could walk and climb over objects in the NTRT simulator, and
some progress was made toward building real robots with a
similar design.80,83 A later study on similar simulated robots
led to high-DoF multisegment spine-like robots that used
central pattern generators (CPGs) to attain various crawling
and snake-like gaits.81 Zappetti et al. demonstrated winch-
driven, modular six-bar icosahedron tensegrities that could be
connected in series to yield a crawling robot.41,84

As evidenced by the research referenced above, crawling
tensegrities can be made of either single controllable seg-
ments or multiple segments that collaborate to control their
ground contact and locomote. By expanding the range of
shape primitives to include additional geometries, such as the
deployable class-II tensegrity tower with pentagonal modular
sections introduced by Veuve et al.,85 additional locomotion
gaits could be attained.

Vibration

Vibrating tensegrities locomote by harnessing oscillating
elements, such as linear electromagnets or eccentric mass
motors, to dynamically excite the whole tensegrity struc-
ture.41,82,86–89 The locomotion mode is characterized by
complex coupling between multiple physical phenomena,
including asymmetrical friction pairings and dynamic
‘‘hopping’’ that ultimately yields motion along a surface. For
example, by dynamically exciting its structure, a two-bar
tensegrity could vibrate in different directions.89 Other ico-
sahedron tensegrity robots could drift along a surface.21,90

Varying the frequency of their driving motors (two21 or
three90) led to some ability to change the robot’s locomotion
speed and direction, with Riefell and Mouret reporting an
impressive maximum speed of 69 BL/min for their
decimeter-scale robot (rod length of 9.4 cm21). Notably, since
the vibrating class of tensegrity does not require large
structural deformations to locomote, some modeling in-
accuracies can be avoided, such as those arising when mod-
eling large deformations and calculating strut collisions. The
vibrating tensegrity thus boasts the resilience characteristic
of tensegrity robots and simplifies modeling efforts.

Other locomotion modes

Other locomotion modes achieved by tensegrities include
peristaltic pipe crawling,91,92 hopping,18,93 and flying.20,94

These locomotion modes could potentially allow robots to
access difficult-to-reach locations or achieve rapid locomotion.

Friesen et al. built a duct climbing robot composed of two
tetragonal sections, made of six linear servos each, and
winches and cables connecting the two sections.91,92 The
tetragonal section would expand to jam in the duct, while the
winches and cables would advance the unjammed section.
This approach could have applications in pipe inspection,
disaster response, or other highly-constrained environments.

Hopping and flying locomotion modes are promising for
switching between rapid, long-distance travel and controlled
local motions, allowing the robot to adjust to mission de-
mands. Garanger et al. showcased a hopping 12-bar rhom-
bicuboctahedron actuated with winch and cables.93 To
achieve hop and roll locomotion, Kim et al. simulated a six-
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bar icosahedron tensegrity with a single thruster in the cen-
ter,18 whereas Mintchev et al. built a six-bar icosahedron
tensegrity with two propellers inside.20 A similar robot by
Zha et al. situates a quadcopter inside a six-bar icosahedron
tensegrity. The quadcopter enables flying, while the ten-
segrity permits the robot to reorient itself after a crash.94

Although no terrestrial mobile robots based on bending
tensegrities have been shown to date, Bliss, Iwasaki, and
Bart-Smith introduced a class-II tensegrity tower composed
of two-bar planar modules that are capable of oscillating a fin
for generating thrust underwater.95 Bending motion primi-
tives have been used by free-swimming fish-inspired robots
as well.38,96 Similarly, Sabelhaus et al. described a five-
vertebrae spine tensegrity called ULTRAspine97 and Zap-
petti et al. demonstrated a variable stiffness vertebrae spine
tensegrity,28 both of which were capable of executing con-
trolled bending motions.

Sensing

Although many tensegrity robots showcased in the litera-
ture operate in a sensor-free, open-loop manner,21,67,98 state

estimation25 and contact sensing23 facilitate closed-loop gait
control and will potentially enable tensegrity robots to exe-
cute controlled dynamic locomotion in unstructured envi-
ronments. A high degree of control over system dynamics
will, in turn, facilitate the transfer of advanced control poli-
cies from simulation to physical hardware. Numerous sensing
methods for tensegrities have been proposed (Fig. 5), yet only
a subset of these have been evaluated in dynamic situations.

Since each member of a class 1 tensegrity is axially loaded,
the full state of a tensegrity robot comprises the spatial po-
sitions and velocities of its endcaps, ground contact infor-
mation, tension in the cables, compression of the struts, and
orientation of the overall structure (although orientation
could be inferred from the spatial positions in a global ref-
erence frame). Often, only partial state information is nec-
essary for successful locomotion. For example, the Modular
Tensegrity Kit introduced by Kimber et al. only requires a
six-axis accelerometer to record its vibrations.19

One logical method to estimate spatial positions is to
measure the distance between nodes. For cable-actuated
tensegrities, measuring the amount the actuator has con-
tracted (or extended) does not account for stretch in the cables

FIG. 5. Sensors allow tensegrities to estimate their 3D shape (state) and detect environmental interactions.25 (A) Top:
contact measurement using force sensors within the struts’ endcaps. Bottom: numerous sensors were integrated into
REcTeR’s struts.63 (B) State estimation using surface-based strain sensors.26 (C) State estimation using external ranging
sensors. ROS, Robot Operating System; UKF, Unscented Kalman Filter. Color images are available online.
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themselves or deformation of the struts. Stretch sensors99–101

could potentially be used, but they have only begun to be
investigated in the context of tensegrity robotics to measure
cable length83 or strut extension.91 For cable-driven robots,
quadrature encoders91 or Hall-effect sensors92 attached to the
motors that spool the cables have been utilized to estimate
cable length.

Other robots have integrated multiple sensors into the ca-
nonical six-bar icosahedron to aid in locomotion. For ex-
ample, ReCTeR had 24 tension sensors (uncalibrated strain
gauges), six ground-reaction force sensors, and three inertial
measurement units (IMUs) on the endcaps of several of the
six-bar tensegrity’s struts (Fig. 5A).23,63 The tension sensors
were input into linear feedback controllers to drive cable
lengths to set points determined by an embodied reservoir
computer. As a result, the system could recover stable loco-
motion—even after being physically restrained. Later work
by Burms et al. used the force sensors to classify terrain.66

SUPERball was designed to overcome some of the me-
chanical limitations of ReCTeR, one of those being restricted
sensing capabilities.63 Tension sensors were integrated into
SUPERball’s 12 passive cables, torque sensors were added to
the active cables, and IMUs measured accelerations on the
endcaps. Zhang et al. used the accelerometers on SUPERball
to directly transfer policies from NTRT to hardware, ad-
dressing part of the simulation-to-reality (sim2real) gap
which prevented open-loop policies from transferring.57

SUPERball v2 featured accelerometers to detect which of its
faces was pointing downward, enabling the robot to deter-
mine feasible actions for intuitive real-time teleoperation by a
human operator.102

Algorithms have also been proposed to intrinsically esti-
mate the shape of tensegrity robots. Caluwaerts et al. pro-
posed an Unscented Kalman Filter-based sensor fusion
algorithm to estimate the 3D state of a tensegrity using
ranging sensors (Fig. 5C).25 Fusing time-of-flight ranging
sensors, IMU, and actuator states, Caluwaerts et al. could
localize a meter-scale tensegrity within a large testing area
(91 m2) with ~10-cm accuracy. Stretch sensors99 and
McKibben muscles103 were integrated into robotic skins to

create a reconfigurable tensegrity that could roll and achieve
simultaneous estimation of the spatial positions of all nodes
on a six-bar tensegrity (Fig. 5B).26,72

Control

Tensegrities can be actuated to achieve a wide range of
goals, from attaining a desired structural shape trajectory
in place104 to locomotion,57 to accomplishing a mission
in the field.102 Pose or task-level controllers can use open
loop or closed loop strategies to determine a desired
sequence of actuator commands and associated forces.
The appropriate controller formulation strongly depends
on the types of actuators and sensors on a tensegrity and
the application intent. This section highlights the essen-
tial role that control theory has played in developing the
field of tensegrity robotics, while conveying how con-
trols can be applied to achieve more effective in-field
deployment.

Controllers can operate over different time horizons and at
various levels of abstraction (Fig. 6). At a low level, con-
trollers act upon a single strut or cable in a larger network,
modulating tension based on the equations of dynamics.
Alternatively, controllers can operate at a global level and
can be formulated to choose a set of actuation patterns that
steer a tensegrity toward a goal. As a hybrid approach, local
dynamics controllers can be placed in sequence or hierar-
chically with controllers of increasing levels of abstraction, to
achieve robust global movement policies.

Numerous tensegrity controllers have emerged to
achieve closed-loop control objectives, often following
several common development models (as summarized in
Fig. 7). Classical control strategies rely upon analytical
models and convex optimization to regulate intended be-
haviors.104 More recently, data-driven57 and bioinspired
techniques81 have allowed the control of more complex
systems that analytical methods cannot handle. However,
it is often infeasible to predict the conditions under
which data-driven and bioinspired approaches can safely
operate.

FIG. 6. Tensegrity robots can be controlled at various levels of abstraction, ranging from low-level motion primitives
generated from manual experimentation or physical models to high-level motion planning to move the robot through a series
of waypoints. Color images are available online.
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Analytical approaches

Tensegrity research based on analytical methods has fo-
cused on modeling the statics13,105 and dynamics12 of a
structure to provide effective equations of motion.14 Given a
dynamic model, it is possible to control a tensegrity structure
along static equilibrium manifolds.104 Changing the rest
lengths of cables in planar tensegrity structures was the goal
of the majority of reported controllers. Dynamic models for
such networks are attainable using minimal coordinates and
ordinary differential equations of motion (Fig. 6, green
shading).106 Skelton and Oliveira showed that the dynamics
of 3D tensegrities cannot be represented by ordinary differ-
ential equations, but rather become systems of differential
algebraic equations.14 Alternatively, feedback linearization
control laws107 and Lyapunov-based controllers for 3D dy-
namic models106 have also been applied for tensegrity con-
trol. Structural control of tensegrities can be coupled with
global planning algorithms to move nodes along a desired
trajectory.108–110 The cables connecting the nodes of ten-
segrity systems are often assumed to behave like linear
springs. Sabelhaus et al. exploited this feature to design
model predictive controllers for moving spine-like tenseg-
rities along a desired configuration trajectory.111

The complex dynamics of tensegrity structures makes
controlling them for locomotion a challenge, prompting
several researchers to develop simpler heuristic controllers
(Fig. 6, blue shading). For example, Shibata et al. used in-
tuition to design a two-actuator policy to tip a shape-memory
alloy driven icosahedron tensegrity between various faces
and locomote.37 Similarly, hand-picked rolling policies were
demonstrated for icosahedron tensegrities using pneumatic
Mckibben actuators as the tensile elements.26,71 Despite
having 24 candidate edges for actuating, typically only one or
two actuators were necessary to tip the tensegrity from face to
face in a predictable manner.

Despite their intuitive appeal, hand-coded policies have
numerous disadvantages. First, they are highly system de-
pendent and do not abstract to other structures beyond the
ones that the policy was developed for. Second, hand-coded
policies are not conducive to dynamic rolling, but rather
quasi-static locomotion modes, such as tipping face-to-face.
Hand-coded policies do not lend themselves to quickly
generating actuation sequences to attain many successive

face transitions along arbitrary paths. Furthermore, tradi-
tional control approaches generally have not accounted for
self-collisions or environmental contact dynamics, limiting
their real-world applicability. Hardware experiments have
not utilized analytical control approaches, because they fre-
quently depend on accurate state information, which is non-
trivial to acquire.

Data-driven and bioinspired frameworks

Seeking to expand beyond hand-coded policies, research-
ers have begun to develop data-driven machine learning, as
well as bioinspired approaches (Fig. 6, blue shading and
Fig. 7, top). When paired with simulators, data-driven ap-
proaches are quite appealing, allowing thousands of control
policies to be quickly evaluated. Since an exhaustive search
of control possibilities is impractical, EAs are frequently
applied to achieve locomotive gaits for tensegrities,29,112

potentially through multiagent descriptions of the modular
system.113,114 In addition, forward kinematics of tensegrity
robots have been solved using feature extraction through su-
pervised learning algorithm115 and energy-based local node
models for changeable edge lengths116 and strut lengths.117 The
search space can also be reduced by imposing biologically-
inspired a priori couplings of control inputs through CPGs,
which have been applied frequently to soft robots and recently
to tensegrities.58,95 In practice, these approaches that are less
dependent on accurate models can make efficient use of sensor
data and computing resources by exploiting body dynamics and
morphological computation.112

In particular, Paul et al. introduced a simulation pipeline
for developing controllers for three- and four-strut tenseg-
rities with both static and dynamic gaits.29 In this pipeline, an
EA operated upon a population of 200 tensegrity robots in an
ODE simulator to implicitly account for the nonlinear dy-
namics of the tensegrities and maximize a simulated robot’s
fitness (distance travelled), by modulating the robot’s actu-
ator firing patterns. Since Paul’s pioneering work, many
subsequent articles have utilized learning and simulation to
generate dynamic rolling policies for tensegrities. In subse-
quent research on six-bar tensegrity robots by Iscen et al.,113

the length of each cable was controlled by a sine wave pattern
with an independent phase, duration, and amplitude, driven
by a centralized synchronization signal, as governed by:

FIG. 7. Information flow in ten-
segrity control policy development.
Top: experiments and biomimicry can
be used to develop open-loop behav-
iors and/or feedback policies. Bottom:
physics models and equations of mo-
tion can generate optimal trajectories,
analytic solutions, and feedback pol-
icies that are useful for improving
data-driven behaviors or even gener-
ating closed-loop capabilities on their
own. This diagram shows enough
connections to capture most of the
processes used by tensegrity robots,
although other development frame-
works are conceivable, including bi-
directional information flows. Color
images are available online.
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y(t) ¼ C þ Asin(x t þ /) (1)

Here, y(t) is the length of a cable, C is an offset, A is the
actuation amplitude, x is the angular frequency, and / is a
phase offset. This formulation resulted in 96 independent
parameters, which were calibrated automatically using EA
that evaluated several thousand controllers in simulation.
Researchers have also proposed phase coupled oscillators
inspired by the salamander nervous system,118,119 applied to
spine-like tensegrity robots.58 To generate policies for spine
tensegrities with extremely high DOF, Mirletz et al. used a
Monte Carlo algorithm to generate initial guesses, followed
by iteratively sampling a Gaussian distribution around the
best policy parameters.58

Another vein of work relates to deep reinforcement
learning (RL) and holds promise of generating successful
feedback control policies that map directly from sensory data
to task-oriented actions.120 A crucial consideration for ex-
tending RL to tensegrities is whether a learned model can be
made to generalize over a large part of the state space. This
consideration can be addressed, in part, using model-based
RL tools, such as Guided Policy Search,121 that combine
several locally valid controllers into a single, more broadly
applicable learned policy. RL has successfully facilitated the
development of rolling controller policies for SUPERball.57

Motion planning

If a robot is able to discern its global position, it can engage
in higher level motion planning, exploiting the well-
developed literature on robot path planning (Fig. 6, red
shading).122 Motion planning is needed to perform complex
tasks with long time horizons, such as goal-directed obstacle-
avoiding locomotion or purposeful deformation of a ten-
segrity structure. Numerous planning algorithms have been
proposed for tensegrity robots, ranging from quasi-static
approaches to more complex asymptotically-optimal kino-
dynamic planners.

Early planning methods for tensegrities planned deploy-
ment and shape change by applying optimization to generate
a sequence of statically stable configurations.108,123 Further
work accounted for self-collision avoidance in this pro-
cess.124,125 More recent approaches plan paths for tensegrity
mobility, but still assume a control process slow enough to
eliminate any dynamic effects.109,124 This quasi-static as-
sumption is often applicable to tensegrity-based civil struc-
tures,126 but is not amenable to robotic applications.

Other planning strategies chain together several motion
primitives using a global planner. This approach decouples
planning from dynamics, often yielding relatively simple yet
intuitive solutions. For example, Vespignani et al. introduced a
steerable teleoperation-based controller for icosahedron ten-
segrities that operated on top of arbitrary tipping control
primitives.102 Seeking to automate the path generation, an-
other group proposed A* for generating actuation sequences
for a rolling and hopping icosahedron in simulation.18 The cost
function for weighing the value of possible trajectories was
dependent on topographic information (height of adjacent tiles
in the search), whether or not hopping or rolling was chosen
(equivalent to energy expended), and the travelled distance.
Another study proposed a geometric planning algorithm that
generalizes to any n-sided polyhedral.74 The approach com-

bines a weighted A* search with geometric constraints of a
given polyhedron and uses an optimization routine to keep
track of orientation and generate collision-free paths through
the plane. Chaining together motion primitives with a global
planner can be effective for some nonlinear systems. However,
it is best suited to scenarios in which a feasible trajectory can
be generated on a known environmental map a priori.

Although the previously discussed planning approaches
were shown to generate feasible paths, they did not consider
energetic optimality under dynamic conditions. To be effi-
cient during long-term use, a tensegrity planner should be
able to select configurations that take advantage of nonlinear
dynamics. For example, energetically complex behaviors
such as rolling, jumping, and climbing all involve nonlinear
dynamics and may enable highly efficient traversal. As well
as monitoring energy, a planner should accommodate a high-
dimensional state space, avoid self-collisions, and consider
the topography of the current terrain. These needs can indi-
vidually be met by strictly geometric methods, but addressing
all of them with a single tool is presently infeasible.

In attempts to converge on physically-realistic, dynamic
planners for tensegrities that tackle the aforementioned
concerns, researchers have begun to look toward kinody-
namic motion planning. Kinodynamic motion planning is
often framed as a nonconvex trajectory optimization problem
in which costs are minimized under certain constraints. Se-
quential convex optimization can be used to iteratively cor-
rect a trajectory toward a local minimum.127 An alternative,
probabilistically complete methodology is sampling-based
motion planning. Unlike global roadmap-based approaches
in this planning family, the popular incremental Rapidly-
Exploring Random Trees (RRT) algorithm can directly ac-
commodate dynamics.128 RRT samples control inputs, rather
than states, and grow the tree by propagating inputs’ effects
forward from states that have already been reached, eventu-
ally building broad coverage. Littlefield et al. introduced the
first kinodynamic planning approach for an icosahedron ro-
bot.129 They used an informed asymptotically optimal
sampling-based approach to generate collision-free se-
quences of kinematic rolling primitives to navigate along a
desired path through cluttered environments. Doney et al.
used a quality diversity algorithm running a model-free
physical tensegrity to autonomously generate a collection of
motion primitives.130

Grand Challenges

Tensegrity robots have many advantages compared to
traditional autonomous ground vehicles: robustness to im-
pacts, low weight, novel locomotion modes, and modularity.
However, no work to date has demonstrated a fully autono-
mous, untethered tensegrity robot navigating through un-
structured terrain. Many roadblocks to this goal remain
unsolved across the domains of design, locomotion, sensing,
and control. In this study, we discuss key challenges and
potential solutions, providing a roadmap for future research.

Automated system design

Building a tensegrity currently requires significant domain
knowledge to balance trade-offs between competing perfor-
mance objectives. Various authors have emphasized different
objectives in the form of quantitative metrics, as we discuss
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later in this section. As an initial example, the performance
objectives for a locomoting tensegrity could include high
locomotion speed, low mass, and minimized cost of trans-
port. Even when a tensegrity robot is designed for one
specific task—locomotion, manipulation, or load bearing—
understanding the interplay of topology, materials, and
function is crucial to realizing an effective system. Across all
tensegrity applications, future research must prioritize a co-
design of materials and topology, rather than treating them as
independent of one another. An emerging example of such
codesign is incorporation of variable stiffness material struts,
which have been shown to enhance deployability and mod-
ulate the mechanics of a tensegrity in situ.131 Another ex-
ample are interconnections in a tensegrity robot arm that can
be adjusted to change the tensegrity’s topology and adjust
stiffness during operation.28

Simulators can serve as a practical tool to evaluate thou-
sands of different topology-material arrangements in the
context of a prescribed function. Yet, finding an appropriate
compromise between design parameters while ensuring that
the corresponding robot is physically realizable is challeng-
ing. There is not currently an established rigorous way to
prescreen designs for their feasibility as physical hardware.
Complicating this issue is the fact that simulators contain
many parameters that contribute to a gap between simulated
and actual performance. The parameters describing system
geometry—such as the length, radius, mass, and system to-
pology—are easy to obtain. These parameters could be
measured on a physical robot and hard coded into the simu-
lation. However, the parameters for the actuation dynamics
and contact forces—such as restitution, friction coefficient,
and actuator speed—are more difficult to measure and model.

Simplifying cable mechanics and soft material contacts in
simulation reduces the number of parameters to tune, but
simultaneously enlarges the sim2real gap. For example, the
simplification of non-Coulombic friction in cable elements
leads to design outputs that would only be possible with
motors with torques and angular velocities beyond what is
commercially available. Reducing the sim2real gap, or at
least estimating this gap to allow informed prototyping and
hypothesis testing, would allow faster transfer from simula-
tion to physical hardware. Possible solutions include inject-
ing noise into the simulator132 and generating a function to
estimate the reality gap.33,133 As other promising options,
sensor feedback57 and a pretrained classifier from sensors134

have been used to improve sim2real for tensegrity robots. In
contrast to manually measuring the robot parameters, data-
driven methods such as these may reduce the human labor
requirements in the iterative identification process.

Other ways to decrease the sim2real gap include improving
and expanding the tools available for manufacturing tensegrity
robots. Ideal designs would boast strong lightweight materials,
low power consumption, lightweight, rapid, and strong actu-
ators, high-density power packs, and high-resolution sensors
for state reconstruction and environmental sensing. Numerous
hardware challenges remain, precluding a simple scale-
invariant design and manufacturing strategy.

One significant challenge is the ‘‘curse of dimensionality,’’
whereby the complexity of both design and assembly in-
creases exponentially with increased numbers of struts and
cables, in addition to the complexities of designing robots at
various length scales. For example, the power density of

various actuator choices varies significantly at different
scales. Winch and cable actuators have an excellent power
density in large (e.g., meter-scale) tensegrities, but are ob-
structive in centimeter scale tensegrities. Conversely, shape
memory alloy actuators have excellent power density at all
scales, but are inefficient relative to rotary motors and slower
at large size scales due to slower heat transfer between the
actuator and the environment. Another important factor can
be that material properties do not scale with system mass,
affecting the level of engineering required. For example, in
small, low-mass tensegrities, the material choice for the
endcaps of the struts is trivial. In contrast, for heavier meter
scale tensegrities, the endcaps experience higher impact
loads and abrasive wear.

Furthermore, tensegrities are notoriously difficult to as-
semble and poorly disposed to automated assembly due to
their complex spatial connections. Recently proposed mod-
ular lattices31,41 and vibration-driven struts with integrated
motors19 reduce assembly times, but much remains toward
developing a streamlined tensegrity robot manufacturing
process with integrated sensing and actuation. For example,
the number of struts in a given design has a profound impact
on assembly complexity, which is one of the reasons it is rare
to see rolling tensegrities with more struts than the canonical
six-bar arrangement or crawling tensegrities with more than
three or four bars in their arrangements. There are several
ways that this challenge may be addressed in the future. One
important step toward reducing the complexity of design and
assembly is the reduction of custom designs for each ten-
segrity robot or making a greater number of the components
digitally manufactured and/or assembled.

State estimation and environmental sensing

In addition to mechanical design challenges, current ten-
segrity robots are limited by state estimation inaccuracies on
the order of several percent of the tensegrities’ strut length.25,26

Such noisy sensing resolution makes closed-loop control dif-
ficult, driving a need for improved sensor fusion algorithms
and more stable onboard sensors. For example, low-noise
strain sensors135 could be integrated into the sensor cables or a
3D camera136 or ranging sensors25 could be attached to stra-
tegic locations for tracking node positions. Furthermore, esti-
mating the state of modular tensegrities has been unexplored.
Once improved sensor suites are developed, there are likely
optimal ways to fuse sensor data to obtain a full state estimate
and then use that to produce and control efficient locomotion
gaits. Finally, environmental perception is a largely unex-
plored domain of tensegrity robotics research, yet presents
immense scientific potential for exploring extraterrestrial en-
vironments. While the compliant structure of a tensegrity
provides a safe internal space for placing environmental sen-
sors, scant work has dedicated that space to house scientific
payloads. Many open questions thus remain, including how to
maintain sensor orientation during rolling and how to mitigate
the occlusions caused by the tensegrity struts.

Autonomous navigation

To date, tensegrity locomotion has largely been confined to
laboratories—simplified environments that are but approxi-
mations of real-world scenarios. However, navigating un-
structured environments autonomously will be essential for
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future robotic missions. Improved state estimation could
potentially be used in a closed-loop control policy and inte-
grated into higher level task planning. For example, one
possible hierarchical control scheme would combine ad-
vances in polyhedral path planning, real-time adjustment of
found paths, and machine learning-based dynamic control
frameworks to create a robust tiered autonomous controller.

Tensegrity planning algorithms could take advantage of
many environmental features that prove catastrophic to
conventional wheeled or legged robots. Discontinuities, such
as cliffs and ridges, require traditional robots to search for a
new safer path. In contrast, a tensegrity robot could take a
shortcut—simply rolling off the edge. Such an unconven-
tional planning framework could save mission-critical re-
sources like time and fuel. Recent work has begun to explore
ways to efficiently locomote between arbitrary waypoints
using symmetry-reduced RL on the rough terrain and steep
slope,64,134 but further research is needed to minimize power
consumption. Overall, with appropriately dense and accurate
state information and planning algorithms that embrace dis-
continuities rather than avoid them, the next generation of
tensegrities could complete missions rapidly at lower risk.

Standardized reporting of performance metrics

In the course of preparing this review article, we found that
few articles reported the same sets of system-wide performance
metrics beyond locomotion speed (in addition to measurements
like rod length and robot mass), with many instead only pre-
senting measurements directly related to the study’s novel
claims. Without standardized metrics for tensegrity robotics, it
will be difficult for the field to measure progress in an objective
manner. While adoption of metrics is ultimately up to the re-
search community and warrants further debate and standardi-
zation, here we outline a few that we believe are particularly
relevant to tensegrity robots. This list is not exhaustive and is
meant as a concise starting point for the field to build and im-
prove upon. Some metrics can be obtained on a static robot,
while for others the robot must be dynamic during measurement.
For example, potential ‘‘static’’ hardware metrics include:

� Robot density (kg=m3)—the mass of the tensegrity ro-
bot divided by its volume, where the volume is defined
as the convex hull of the robot when the robot occupies
its maximum volume.

� Characteristic rod length (m)—the length of a tensegrity
strut. Since compressive elements in tensegrities can vary
widely, we define the characteristic length based on one
of several cases as: the minimum or rest length of actuated
rods, the average distance between the geometric center
and the element’s multiple ends for compressive elements
with more than two end nodes (e.g., a tetrahedral element
in a tensegrity spine), or the average strut length in ten-
segrities that have struts of different lengths. Having
characteristic rod length as a reported metric is especially
important for comparing the costs of transport of ten-
segrity robots at very different scales.

� Maximum bending, buckling, and crushing loads (N)—
the load at which a rod experiences plastic deformation
in any of these three load configurations, typically in
impact scenarios.

These metrics seek to provide a quantitative depiction of
how lightweight, large, and strong the robot is, while en-

abling comparison between robots as different as the six-bar
icosahedron and spine-like robots. Beyond these static,
structurally-oriented metrics, we present potential locomo-
tion performance metrics, including:

� Cost of transport (unitless)—typically defined as
CoT ¼mgv=Pin, where m is the system mass, g is the
gravitational constant, v is the average velocity, and Pin

is the average power input to the robot. Alternatively, it
can be defined as CoT ¼mgx=Ein, where x is the dis-
tance traveled and Ein the energy input. Cost of trans-
port gives the ratio of energy used in productive motion
to that input to the system. Here, we propose measuring
the cost of transport while traveling over flat ground
without obstacles at standard atmospheric conditions.
Since it is unitless, cost of transport is an effective way
to make comparisons between disparate tensegrity de-
signs, as well as other robots.

� Characteristic velocity (BL=s)—the robot’s velocity
divided by longest length of the robot body. In many
cases, the longest length of the body will be approxi-
mately the characteristic rod length.

� Maximum climbable incline (degrees)—the maximum
angle a locomoting robot can climb in its intended
environment.

Conclusions

Leveraging their lightweight resilient bodies, tensegrity
robots have shown great potential to explore extreme envi-
ronments. Tensegrities can engage in numerous locomotion
modes, including crawling, rolling, and hopping. Such op-
erational flexibility enables them to adapt to changing de-
mands, navigate novel terrain, and operate even after
experiencing significant damage. Continued development of
tensegrities could one day allow us to explore locations in-
accessible with existing technology, such as lava tubes on
extraterrestrial environments.

Beyond the field of robotics, tensegrity structures have
provided simplified models to test biomechanical theories.
Progressing the field of tensegrity robotics presents a unique
opportunity to build controllable analogs for testing theories
of legged locomotion, the spine’s role in animals’ dynamic
stability, the role of passive stabilization mechanisms in
cellular behavior, and the stresses experienced throughout the
human body’s bone-muscle system.4 Illuminating these dy-
namics will lead to more targeted physical therapy, ergo-
nomic exosuits, and informed biological models. Indeed, by
studying the tensegrity, roboticists have the chance to in-
crease our knowledge of ourselves and improve human life.
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50. Barbič J, Sin FS, Schroeder D. Vega FEM Library. Accessed
September, 2020. http://www.jernejbarbic.com/vega

51. Coevoet E, Morales-Bieze T, Largilliere F, et al. Software
toolkit for modeling, simulation, and control of soft ro-
bots. Adv Robot 2017;31:1208–1224.

52. Todorov E, Erez T, Tassa Y. Mujoco: a physics engine
for model-based control. In IEEE/RSJ International
Conference on Intelligent Robots and Systems. Algarve,
Portugal: IEEE, 2012, pp. 5026–5033.

53. Wang K, Aanjaneya M, Bekris K. A first principles ap-
proach for data-efficient system identification of spring-
rod systems via differentiable physics engines. Proc Mach
Learn Res 2020;120:1–15.

54. Sultan C, Corless M, Skelton RE. Tensegrity flight sim-
ulator. J Guid Control Dyn 2000;23:1055–1064.

55. Rovira AG, Mirats Tur JM. Control and simulation
of a tensegrity-based mobile robot. RAS 2009;57:526–
535.

56. Virtual tensegrities application. Accessed September,
2020. http://www.xozzox.com/downloads.html

57. Zhang M, Geng X, Bruce J, et al. Deep reinforcement
learning for tensegrity robot locomotion. In IEEE Inter-
national Conference on Robotics and Automation (ICRA).
Singapore, Singapore: IEEE, 2017, pp. 634–641.

58. Mirletz BT, Park I-W, Quinn RD, et al. Towards bridging
the reality gap between tensegrity simulation and robotic
hardware. In IEEE/RSJ International Conference on In-
telligent Robots and Systems (IROS). Hamburg, Germany:
IEEE, 2015, pp. 5357–5363.

59. Zhu S, Surovik D, Bekris K, et al. Efficient model iden-
tification for tensegrity locomotion. In IEEE/RSJ Inter-
national Conference on Intelligent Robots and Systems
(IROS). Madrid, Spain: IEEE, 2018, pp. 2985–2990.

60. Zhu S, Kimmel A, Bekris KE, et al. Fast model identifi-
cation via physics engines for data-efficient policy search.
In Proceedings of the 27th International Joint Conference
on Artificial Intelligence. International Joint Conferences
on Artificial Intelligence, Stockholm, Sweden, 2018,
pp. 3249–3256.

61. Battaglia P, Pascanu R, Lai M, et al. Interaction networks for
learning about objects, relations and physics. In Advances in
Neural Information Processing Systems. Curran Associates,
Inc., Barcelona, Spain, 2016, pp. 4502–4510.

62. Kim K, Agogino AK, Agogino AM. Rolling locomotion
of cable-driven soft spherical tensegrity robots. Soft Robot
2020;7:346–361.

63. Bruce J, Caluwaerts K, Iscen A, et al. Design and evolution
of a modular tensegrity robot platform. In IEEE Interna-
tional Conference on Robotics and Automation (ICRA).
Hong Kong, China: IEEE, 2014, pp. 3483–3489.

64. Surovik D, Bruce J, Wang K, et al. Any-axis tensegrity
rolling via symmetry-reduced reinforcement learning. In
Proceedings of the International Symposium on Experi-
mental Robotics (Springer Proceedings in Advanced Ro-
botics). Cham: Springer International Publishing, 2020,
pp. 411–421.

65. Zhao K, Chang J, Li B, et al. Rolling direction prediction
of tensegrity robot on the slope based on FEM and GA.
Proc Inst Mech Eng C 2020;234:3846–3858.

66. Burms J, Caluwaerts K, Dambre J. Online unsupervised
terrain classification for a compliant tensegrity robot using
a mixture of echo state networks. In International Con-
ference on Robotics and Automation (ICRA). Seattle, WA:
IEEE, 2015, pp. 4252–4257.

67. Chen L-H, Kim K, Tang E, et al. Soft spherical tensegrity
robot design using rod-centered actuation and control. J
Mech Robot 2017;9:025001.

68. Kim K, Agogino AK, Moon D, et al. Rapid prototyping design
and control of tensegrity soft robot for locomotion. In IEEE
International Conference on Robotics and Biomimetics (RO-
BIO 2014). Bali, Indonesia: IEEE, 2014, pp. 7–14.

69. Wang Z, Li K, He Q, et al. A light-powered ultralight
tensegrity robot with high deformability and load capac-
ity. Adv Mater 2018;310:1806849.

70. Wu L, Andrade MJD, Brahme T, et al. A reconfigurable
robot with tensegrity structure using nylon artificial
muscle. In Active and Passive Smart Structures and

TENSEGRITY ROBOTICS 15

D
ow

nl
oa

de
d 

by
 Y

A
L

E
 U

N
IV

E
R

SI
T

Y
 f

ro
m

 w
w

w
.li

eb
er

tp
ub

.c
om

 a
t 1

1/
07

/2
1.

 F
or

 p
er

so
na

l u
se

 o
nl

y.
 

https://github.com/Jfriesen222/Tensegrity_MATLAB_Objects
https://github.com/Jfriesen222/Tensegrity_MATLAB_Objects
http://bulletphysics.org
http://www.ode.org
http://www.jernejbarbic.com/vega
http://www.xozzox.com/downloads.html


Integrated Systems 2016. International Society for Optics
and Photonics, 2016, vol. 9799, p. 97993K.

71. Koizumi Y, Shibata M, Hirai S. Rolling tensegrity driven
by pneumatic soft actuators. In International Conference
on Robotics and Automation. Saint Paul, Minnesota:
IEEE, 2012, pp. 1988–1993.

72. Booth JW, Shah D, Case JC, et al. OmniSkins: robotic
skins that turn inanimate objects into multifunctional ro-
bots. Sci Robot 2018;3:eaat1853.
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